Remodeling of synaptic AMPA receptor subtype alters the probability and pattern of action potential firing.
نویسندگان
چکیده
Changes in the subunit composition of postsynaptic AMPA-type glutamate receptors can be induced at CNS synapses by neural activity and under certain pathological conditions. Fear-induced incorporation of GluR2-containing receptors at cerebellar synapses selectively prolongs the decay time of synaptic currents, whereas a switch from GluR2-lacking to GluR2-containing receptors induced by parallel fiber stimulation reduces the amplitude in addition to lengthening the duration of EPSCs. Although it is often assumed that these two forms of synaptic plasticity will alter action potential (AP) firing in the postsynaptic neuron, this has not been directly tested. Using a dynamic current-clamp approach, we now show that the fear-induced increase in EPSC duration increases the size of EPSPs and thereby markedly enhances the AP firing probability. In contrast, the parallel fiber stimulation-triggered switch in GluR2 expression reduces the EPSP-AP coupling because of the decrease in the synaptic current amplitude. The switch also abolished the paired-pulse facilitation that arose from an activity and spermine-dependent unblock of GluR2-lacking receptors and hence reduced the ability of paired stimuli to evoke two consecutive APs. Therefore, fear-induced incorporation of GluR2 receptors enhances the EPSP-AP coupling, but the parallel fiber stimulation-triggered switch reduces both the EPSP-AP coupling and evoked AP doublets. In contrast to long-term potentiation and depression, which modify the amplitude of synaptic currents, this activity-induced change in AMPA receptor phenotype alters synaptic conductance waveform and postsynaptic short-term plasticity. These changes modulate both the probability and pattern of evoked AP firing via a fundamentally different mechanism from long-term potentiation and long-term depression.
منابع مشابه
Inhibition of Ca -activated large-conductance K channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells
Liu Y, Savtchouk I, Acharjee S, Liu SJ. Inhibition of Ca activated large-conductance K channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells. J Neurophysiol 106: 144–152, 2011. First published May 11, 2011; doi:10.1152/jn.01107.2010.—Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express -ami...
متن کاملGluA1 Phosphorylation Alters Evoked Firing Pattern In Vivo
AMPA and NMDA receptors convey fast synaptic transmission in the CNS. Their relative contribution to synaptic output and phosphorylation state regulate synaptic plasticity. The AMPA receptor subunit GluA1 is central in synaptic plasticity. Phosphorylation of GluA1 regulates channel properties and trafficking. The firing rate averaged over several hundred ms is used to monitor cellular input. Ho...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملPlasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors
Subiculum, the primary efferent pathway of hippocampus, participates in memory for spatial tasks, relapse to drug abuse, and temporal lobe seizures. Subicular pyramidal neurons exhibit low-threshold burst firing driven by a spike afterdepolarization. Here we report that burst firing can be regulated by stimulation of afferent projections to subiculum. Unlike synaptic plasticity, burst plasticit...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 2 شماره
صفحات -
تاریخ انتشار 2011